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A PASSIVE ELECTROENCEPHALOGRAPHY BRAIN-COMPUTER INTERFACE
PREDICTS MENTAL WORKLOAD DURING FLIGHT SIMULATION

Adam Fraser, Kathleen Van Benthem and Chris M. Herdman
Visualization and Simulation (VSIM) Centre
Carleton University
Ottawa, Canada

The objective of the present research was to investigate an
electroencephalography (EEG) brain-computer interface (BCI) for monitoring
realistic variations in mental workload during virtual reality (VR) flight
simulation. Many aviation accidents are related to pilot cognition and a mismatch
between task demands and cognitive resources. Real-time neurophysiological
monitoring offers an approach to identifying high-workload mental states by
obtaining continuous, objective measurements without adding to the workload of
the pilot. Workload was manipulated by varying navigational difficulty and
communication tasks during VR flight simulation. EEG data collected during
simulated flight was analyzed to evaluate performance of passive BCI for
classification of workload level. BCI approaches were guided by EEG workload
literature. A classification rate of 75.9% was obtained, with Alpha and Beta
frequency bands being most informative. The results indicate that a passive EEG-
BCI may be an effective strategy for monitoring workload and enhancing flight
safety.

Electroencephalography (EEG) is a relatively non-invasive and temporally precise
neuroimaging device and has become a popular instrument for monitoring mental states (Abreu
et al., 2018). In recent decades EEG has been applied to indexing mental workload states (e.g.,
Berka et al., 2007) and more recently has been included in research relating to monitoring mental
workload during flight activities (e.g., Dehais et al., 2019; Harja et al., 2020).

The motivation for incorporating EEG in pilot workload monitoring is that EEG provides
an opportunity for objective and continuous measurements of workload level. Achieving reliable
EEG measurements of workload has the potential to facilitate prevention of frequent workload-
related accidents in aviation and contribute to aviation psychology research. The non-
physiological standard for workload evaluation is subjective reporting, wherein pilots rank their
level of workload (e.g., NASA Task Load Index) affer performing a flight operation. However,
this method has its limitations. For example, perceived workload does not always correlate well
with task performance (see Matthews et al., 2020 for a review). Assessing workload through
subjective questionnaires also requires stopping the primary task (or directing attention away
from it) which restricts use of this method in real-world settings.

Efforts are being made to establish EEG into a passive BCI (pBCI) for the purpose of
classifying high-workload mental states during flight. A pBCI system employs a neuroimaging
device to acquire a signal that then gets fed to an analysis program for the purpose of classifying
neural activity as relating to a certain mental state. pBCI are distinct from conventional ‘active’
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BCI which incorporate a response or action such as controlled movement over a robotic limb
(e.g., Hochberg et al., 2012). pBCI is now being explored in pilot mental workload research. For
example, Dehais et al. (2019) employed an off-line EEG pBClI to classify high- and low-
workload periods during flight and obtained 71% accuracy. Although promising, 71% likely
illustrates the low-end of potential for pBCI as Dehais et al. employed a 6 dry-electrode system
in an actual aircraft which encompasses many engineering and signal acquisition limitations.

The purpose of the present research was to evaluate the efficacy of pBCI as a pilot
workload monitoring tool under dynamic flight environments. Workload was manipulated
through changes in pilot related tasks. Detecting changes from a ‘medium’ to high level of
workload is most critical for flight safety, therefore participants were continuously loaded with
tasks even when not in the high-workload condition. EEG was collected during flight and
analyzed off-line to determine the predictive power of EEG-pBCI on workload level. The EEG
workload literature guided selection of specific EEG features and scalp locations. Alpha, Beta,
and Theta EEG oscillations were hypothesized to reflect workload level, particularly at frontal
and parietal electrode sites.

Method
Participants

Fifteen participants with no flying experience were recruited for the present study. All
participants were briefed on task requirements, and experiment materials before providing
written consent. Ethics were approved by the Carleton University Research Ethics Board
(CUREB). Participants were reimbursed for their participation with refreshments and course-
credit.

Procedure

Participants ‘flew’ three practice circuits and four test circuits in a VR flight
environment. Half of the test circuits contained a radio-message call-sign memorization task. As
shown in Figure 1, participants were instructed to navigate through a series of large rectangular
hoops which outlined the oval path of the circuit. Circuits were initiated at altitude of the first
hoop at the end of the downwind leg of the circuit. Each circuit took approximately six minutes
to complete. Participants were paused by the experimenter when they returned to the starting
point of the circuit. After each circuit, participants were presented with questionnaires.
Participants were queried about their comfort relating to the VR system and asked to recall the
call signs after high-workload circuits.

Mental workload was manipulated between circuits via the presentation of the call sign
task, and within circuits by the segment of flight. The high-workload (HWL) condition included
all the flight time that occurred during the crosswind and base legs in the circuits that included
the call sign tasks. The crosswind segments were relatively challenging for participants as it
involved rapid change in heading and altitude. During HWL circuits participants were instructed
to listen for and remember the aircraft call signs mentioned in pre-recorded air-to-air
communication messages (e.g., “Pendleton Traffic, this is Delta Echo Foxtrot, Cessna 150, Five
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Miles to the Northeast, Inbound for touch and gos”). The medium-workload (MWL) condition
was all flight that occurred during the runway segments in the circuits that did not contain the
call sign task. This segment contained straight flight without curves or changes in altitude,
heading, or airspeed.

Downwind Leg

_______

—————— 1 << _4@.—1\ Hard --- Hard
Med --- Med @B

Figure I. lllustration of flight circuit. Participants began each circuit at the location of the double
arrows and at altitude of the first hoop (in green). The red dashed line outlines the navigationally
challenging portions of the flight path (Base and Crosswind legs) and the green corresponds to
the easiest section of flight (runway leg). Each curve took approximately 40 seconds to complete
and each straight leg approximately 140 seconds. The speaker symbols represent the locations
where pre-recorded messages were played.

Equipment

Flight simulation apparatus: An HTC Vive VR headset (2016) was used to graphically
display the 3D flight simulation, including a full Cessna 172 model aircraft and all exterior
terrain and airspace. The flight simulation was produced by Lockheed Martin’s Prepar3d
software. The location was geo-specific terrain consisting of coastal and mountainous regions
surrounding an aerodrome in Hong Kong. The VR headset provided a 360-degree virtual
environment. Flight instruments were made visible in the simulation and corresponded to the
physical locations of the yoke, throttle, and flaps in the flight control unit (See Figure 2). The
simulation produced aircraft realistic visuals and engine noise. Weather conditions were clear
with no experience of turbulence.

Electroencephalography: Electrophysiological data was collected using an EMOTIV
EPOC+ 14 channel wireless EEG system with electrodes located at AF3, F7, F3, FC5, T7, P7,
Ol1, 02, P8, T8, FC6, F4, F8, AF4. The channel placements follow the international 10-20
system and were referenced online to electrodes P3 and P4. Channels AF3 and AF4 were
positioned underneath the top of the VR headset to accommodate the simultaneous use of the
two devices (see Figure 2). The EEG recordings were collected at 2048 Hz, and then down-
sampled to 256 Hz and were transmitted wirelessly via Bluetooth to an iMac desktop computer.
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Figure II. The configuration of the HTC Vive virtual reality headset and EMOTIV EPOC+ EEG
headset on the left. The participants’ view of the simulation environment is displayed on the top
right, and the physical instrument layout is shown on the bottom right.

Measures

Continuous EEG measures were transformed into power spectral densities via Hamming
windowed sinc FIR filter using the MATLAB plugin EEGLab. Frequency ranges were defined to
correspond to conventional EEG ‘frequency bands’. The frequency bands were defined as: Delta
(1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), and Beta (12-32 Hz).

Analysis

EEG spectral power densities were used as predictors in a classification scheme using a linear
discriminant analysis (LDA) algorithm via BCILab. LDA has been recommended as a favorable
machine learning algorithm for EEG-BCI as its relative simplicity is favorable for sampling
limitations of most human EEG research paradigms (Lotte at al., 2007). Spectral power densities
were computed for each 1-second window in high- and medium-workload conditions. There
were 120 data points for each condition for each participant. A k-fold cross-validation scheme
was used, where 200 of the total data points were used for training and 40 were used for testing.
This classification scheme was applied to various approaches including reducing electrodes and
reducing frequency band inclusion with the aim of reducing complexity of the BCI system.

Results

Analysis of power spectral densities and classification scores revealed that classification
performance was enhanced by evaluating only the Theta, Beta, and Alpha bands. Figure 3 shows
the distributions of classification scores from best performing to worst performing across
participants. The model including only the Theta, Beta, and Alpha bands are shown in red.
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Comparison of Frequency Band Classification Performance

FrequencyBands
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@ Alpha
@ Theta

Delta

Classification Rate %

Ranked Performance

Figure III. Comparison of classification performance for spectral filtering approach. The full
model (red) contains oscillatory information between 4 and 32 Hz. Scores from left to right are
ordered from better to worse performance separately for each approach (i.e., participant order is
varied for each line graph, and y columns do not necessarily correspond to the same participant).

Theta, Beta, and Alpha bands were employed as the spectral filtering model for the
following analyses. First all electrodes were included which resulted in a mean classification rate
0of 56.5% (SD = 13.5%). Classification was improved to a mean of 61.4% (SD = 11.5) with
electrode reduction only the primary electrodes that have been related to workload in previous
research (AF3, AF4, F3, F4, FCS5, FC6, P7, P8, O1, & O2). The third analysis removed the two
occipital electrodes due to implications of noise related to eye movements and visual
inconsistencies (63%, SD = 11.9). The fourth analysis involved removing four participants with
poor BCI performance and may be related to the phenomena of BCI 'illiteracy’. BCI illiteracy
occurs in about 20% of subjects where the necessary detection of brain signals is unsuccessful
and likely related to neuroanatomical properties (Allison & Neuper, 2010). Lastly, classification
approaches were divided into two separate classification approaches for sequential circuits to
eliminate temporal effects on EEG signal quality. The classification score for the first two
circuits was averaged with the classification score of the last two circuits for each participant and
resulted in a classification accuracy of 75.9% (SD = 7.5%).

Classification rates across different BCl paradigms

Electrodes

B 1. Al Electrodes

B 2 IDX Electrodes

. 3. IDX - Occipital Electrodes

. 4_1DX - Occipital Electrodes & BCl lliterate Participants

El 5. Temporal Binning of IDX - Occipital Electrodes & BCl lliterate Participants

Classification Rate (%)

Figure IV. Distributions of participant classification rates as electrode selection was refined. The
‘index electrodes’ are described in Figure 4. Note: IDX = index electrodes.

Discussion
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The present research investigated an EEG-pBCI for monitoring mental workload during
VR flight simulation. Workload was manipulated by varying navigational difficulty and
performing communication tasks. The workload manipulations were selected for enhancing
ecological validity by corresponding with workload variations experienced in regular flight. EEG
data was collected and used to classify periods of flight as medium- or high-workload.

Several pBCI approaches were used. Each modification reduced complexity and
increased pBCI accuracy, and was grounded in the literature. Similarly, the predictive EEG
oscillations and the relevant brain regions matched the hypotheses. Particularly that oscillations
within the Theta, Alpha, and Beta range and at parietal and frontal regions were most predictive
of workload levels. The final pBCI scheme was successful in classifying medium- versus high-
workload conditions 75.9% of the time.

The final classification accuracy is estimated to be a conservative approximation of the
potential of pBCI. Longer training phases, individual customization, and training over repeated
uses may be feasible strategies to enhance classification. We conclude that, with further
development, a passive EEG-BCI may be an effective tool for monitoring pilot workload and
enhancing flight safety.
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