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A PASSIVE ELECTROENCEPHALOGRAPHY BRAIN-COMPUTER INTERFACE 

PREDICTS MENTAL  WORKLOAD  DURING  FLIGHT SIMULATION  

 

Adam Fraser, Kathleen Van Benthem and Chris M. Herdman  

Visualization and Simulation (VSIM) Centre  

Carleton University  

Ottawa, Canada  

The objective of the present research was to investigate an 

electroencephalography (EEG) brain-computer interface (BCI) for monitoring 

realistic variations in mental workload during virtual reality (VR) flight 

simulation. Many aviation accidents are related to pilot cognition and a mismatch 

between task demands and cognitive resources. Real-time neurophysiological 

monitoring offers an  approach to identifying high-workload mental states by 

obtaining continuous, objective measurements without adding to the workload of 

the pilot.  Workload was manipulated by varying navigational difficulty and 

communication tasks during VR flight simulation. EEG data collected during 

simulated flight was analyzed to evaluate performance of passive BCI for  

classification of workload level. BCI approaches were guided by EEG workload 

literature. A classification rate of 75.9% was obtained, with Alpha and Beta  

frequency bands being most informative. The results indicate that a passive EEG-

BCI may be  an effective  strategy for monitoring workload and enhancing flight  

safety.   

Electroencephalography (EEG) is a relatively non-invasive and temporally precise 

neuroimaging device and has become a popular instrument for monitoring mental states (Abreu 

et al., 2018). In recent decades EEG has been applied to indexing mental workload states (e.g., 

Berka et al., 2007) and more recently has been included in research relating to monitoring mental 

workload during flight activities (e.g., Dehais et al., 2019; Harja et al., 2020). 

The motivation for incorporating EEG in pilot workload monitoring is that EEG provides 

an opportunity for objective and continuous measurements of workload level. Achieving reliable 

EEG measurements of workload has the potential to facilitate prevention of frequent workload-

related accidents in aviation and contribute to aviation psychology research. The non-

physiological standard for workload evaluation is subjective reporting, wherein pilots rank their 

level of workload (e.g., NASA Task Load Index) after performing a flight operation. However, 

this method has its limitations. For example, perceived workload does not always correlate well 

with task performance (see Matthews et al., 2020 for a review). Assessing workload through 

subjective questionnaires also requires stopping the primary task (or directing attention away 

from it) which restricts use of this method in real-world settings. 

Efforts are being made to establish EEG into a passive BCI (pBCI) for the  purpose of 

classifying high-workload mental states during flight. A pBCI system employs a neuroimaging 

device to acquire a signal that then gets fed to an analysis program for the purpose of classifying 

neural activity as relating to a certain mental state. pBCI are distinct from conventional ‘active’ 
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BCI which incorporate a response or action such as controlled movement over a robotic limb 

(e.g., Hochberg et al., 2012). pBCI is now being explored in pilot mental workload research. For 

example, Dehais et al. (2019) employed an off-line EEG pBCI to classify high- and low-

workload periods during flight and obtained 71% accuracy. Although promising, 71% likely 

illustrates the low-end of potential for pBCI as Dehais et al. employed a 6 dry-electrode system 

in an actual aircraft which encompasses many engineering and signal acquisition limitations.  

The purpose of the present research was to evaluate the efficacy of pBCI as a pilot 

workload monitoring tool under dynamic flight environments. Workload was manipulated 

through changes in pilot related tasks. Detecting changes from a ‘medium’ to high level of 

workload is most critical for flight safety, therefore participants were continuously loaded with 

tasks even when not in the high-workload condition. EEG was collected during flight and 

analyzed off-line to determine the predictive power of EEG-pBCI on workload level. The EEG 

workload literature guided selection of specific EEG features and scalp locations. Alpha, Beta, 

and Theta EEG oscillations were hypothesized to reflect workload level, particularly at frontal 

and parietal electrode sites.    

Method 

Participants 

Fifteen participants with no flying experience were recruited for the present study. All 

participants were briefed on task requirements, and experiment materials before providing 

written consent. Ethics were approved by the Carleton University Research Ethics Board 

(CUREB). Participants were reimbursed for their participation with refreshments and course-

credit. 

Procedure 

Participants ‘flew’ three practice circuits and four test circuits in a VR flight 
environment. Half of the test circuits contained a radio-message call-sign memorization task. As 

shown in Figure 1, participants were instructed to navigate through a series of large rectangular 

hoops which outlined the oval path of the circuit. Circuits were initiated at altitude of the first 

hoop at the end of the downwind leg of the circuit. Each circuit took approximately six minutes 

to complete. Participants were paused by the experimenter when they returned to the starting 

point of the circuit. After each circuit, participants were presented with questionnaires. 

Participants were queried about their comfort relating to the VR system and asked to recall the 

call signs after high-workload circuits.  

Mental workload was manipulated between circuits via the presentation of the call sign 

task, and within circuits by the segment of flight. The high-workload (HWL) condition included 

all the flight time that occurred during the crosswind and base legs in the circuits that included 

the call sign tasks. The crosswind segments were relatively challenging for participants as it 

involved rapid change in heading and altitude. During HWL circuits participants were instructed 

to listen for and remember the aircraft call signs mentioned in pre-recorded air-to-air 

communication messages (e.g., “Pendleton Traffic, this is Delta Echo Foxtrot, Cessna 150, Five 
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Miles to the Northeast, Inbound for touch and gos”). The medium-workload (MWL) condition 

was all flight that occurred during the runway segments in the circuits that did not contain the 

call sign task. This segment contained straight flight without curves or changes in altitude, 

heading, or airspeed. 

Figure Ⅰ. Illustration of flight circuit. Participants began each circuit at the location of the double 

arrows and at altitude of the first hoop (in green). The red dashed line outlines the navigationally 

challenging portions of the flight path (Base and Crosswind legs) and the green corresponds to 

the easiest section of flight (runway leg). Each curve took approximately 40 seconds to complete 

and each straight leg approximately 140 seconds. The speaker symbols represent the locations 

where pre-recorded messages were played. 

Equipment 

Flight simulation apparatus: An HTC Vive VR headset (2016) was used to graphically 

display the 3D flight simulation, including a full Cessna 172 model aircraft and all exterior 

terrain and airspace. The flight simulation was produced by Lockheed Martin’s Prepar3d 

software. The location was geo-specific terrain consisting of coastal and mountainous regions 

surrounding an aerodrome in Hong Kong. The VR headset provided a 360-degree virtual 

environment. Flight instruments were made visible in the simulation and corresponded to the 

physical locations of the yoke, throttle, and flaps in the flight control unit (See Figure 2). The 

simulation produced aircraft realistic visuals and engine noise. Weather conditions were clear 

with no experience of turbulence. 

Electroencephalography: Electrophysiological data was collected using an EMOTIV 

EPOC+ 14 channel wireless EEG system with electrodes located at AF3, F7, F3, FC5, T7, P7, 

O1, O2, P8, T8, FC6, F4, F8, AF4. The channel placements follow the international 10-20 

system and were referenced online to electrodes P3 and P4. Channels AF3 and AF4 were 

positioned underneath the top of the VR headset to accommodate the simultaneous use of the 

two devices (see Figure 2). The EEG recordings were collected at 2048 Hz, and then down-

sampled to 256 Hz and were transmitted wirelessly via Bluetooth to an iMac desktop computer. 
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Figure ⅠⅠ. The configuration of the HTC Vive virtual reality headset and EMOTIV EPOC+ EEG 

headset on the left. The participants’ view of the simulation environment is displayed on the top 

right, and the physical instrument layout is shown on the bottom right. 

Measures 

Continuous EEG measures were transformed into power spectral densities via Hamming 

windowed sinc FIR filter using the MATLAB plugin EEGLab. Frequency ranges were defined to 

correspond to conventional EEG ‘frequency bands’. The frequency bands were defined as: Delta 

(1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), and Beta (12-32 Hz). 

Analysis 

EEG spectral power densities were used as predictors in a classification scheme using a linear 

discriminant analysis (LDA) algorithm via BCILab. LDA has been recommended as a favorable 

machine learning algorithm for EEG-BCI as its relative simplicity is favorable for sampling 

limitations of most human EEG research paradigms (Lotte at al., 2007). Spectral power densities 

were computed for each 1-second window in high- and  medium-workload conditions. There 

were 120 data points for each condition for each participant. A k-fold cross-validation scheme 

was used, where 200 of the total data points were used for training and 40 were used for testing. 

This classification scheme was applied to various approaches including reducing electrodes and 

reducing frequency band inclusion with the aim of reducing complexity of the BCI system. 

Results 

Analysis of power spectral densities and classification scores revealed that classification 

performance was enhanced by evaluating only the Theta, Beta, and Alpha bands. Figure 3 shows 

the distributions of classification scores from best performing to worst performing across 

participants. The model including only the Theta, Beta, and Alpha bands are shown in red. 
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Figure ⅠⅠⅠ. Comparison of classification performance for spectral filtering approach. The full 

model (red) contains oscillatory information between 4 and 32 Hz. Scores from left to right are 

ordered from better to worse performance separately for each approach (i.e., participant order is 

varied for each line graph, and y columns do not necessarily correspond to the same participant). 

Theta, Beta, and Alpha bands were employed as the spectral filtering model for the 

following analyses. First all electrodes were included which resulted in a mean classification rate 

of 56.5% (SD = 13.5%). Classification was improved to a mean of 61.4% (SD = 11.5) with 

electrode reduction only the primary electrodes that have been related to workload in previous 

research (AF3, AF4, F3, F4, FC5, FC6, P7, P8, O1, & O2). The third analysis removed the two 

occipital electrodes due to implications of noise related to eye movements and visual 

inconsistencies (63%, SD = 11.9). The fourth analysis involved removing four participants with 

poor BCI performance and may be related to the phenomena of BCI 'illiteracy’. BCI illiteracy 

occurs in about 20% of subjects where the necessary detection of brain signals is unsuccessful 

and likely related to neuroanatomical properties (Allison & Neuper, 2010). Lastly, classification 

approaches were divided into two separate classification approaches for sequential circuits to 

eliminate temporal effects on EEG signal quality. The classification score for the first two 

circuits was averaged with the classification score of the last two circuits for each participant and 

resulted in a classification accuracy of 75.9% (SD = 7.5%).   

Figure Ⅳ. Distributions of participant classification rates as electrode selection was refined. The 

‘index electrodes’ are described in Figure 4. Note: IDX = index electrodes. 

Discussion 
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The present research investigated an EEG-pBCI for monitoring mental workload during 

VR flight simulation. Workload was manipulated by varying navigational difficulty and 

performing communication tasks. The workload manipulations were selected for enhancing 

ecological validity by corresponding with workload variations experienced in regular flight. EEG 

data was collected and used to classify periods of flight as medium- or high-workload.  

Several pBCI approaches were used.  Each modification reduced complexity and 

increased pBCI accuracy, and was grounded in the literature. Similarly, the predictive EEG 

oscillations and the relevant brain regions matched the hypotheses. Particularly that oscillations 

within the Theta, Alpha, and Beta range and at parietal and frontal regions were most predictive 

of workload levels. The final pBCI scheme was successful in classifying medium- versus high-

workload conditions 75.9% of the time. 

The final classification accuracy is estimated to be a conservative approximation of the 

potential of pBCI. Longer training phases, individual customization, and training over repeated 

uses may be feasible strategies to enhance classification. We conclude that, with further 

development, a passive EEG-BCI may be an effective tool for monitoring pilot workload and 

enhancing flight safety. 

References 

Abreu, R., Leal, A., & Figueiredo, P. (2018). EEG-Informed fMRI: A Review of Data Analysis  

Methods. Frontiers in Human Neuroscience, 12.  

Allison, B., & Neuper, C. (2010). Could anyone use a BCI?  In Brain-Computer Interfaces:  

HumanComputer Interaction Series (pp. 35–54).  

 

Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., Olmstead,  

R. E., Tremoulet, P. D., & Craven, P. L. (2007). EEG correlates of task engagement and 

mental workload in vigilance, learning, and memory tasks. Aviation, Space, and 

Environmental Medicine, 78(5), B231–B244.  

Dehais, F., Duprès, A., Blum, S., Drougard, N., Scannella,  S., Roy, R. N., & Lotte, F. (2019).  

Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power with a Six Dry-

Electrode EEG System in Real Flight Conditions.  Sensors (Basel, Switzerland), 19(6).   

Hajra, S. G., Xi, P., & Law, A. (2020, October). A comparison of ECG and EEG metrics for in- 

flight monitoring of helicopter pilot workload. In  2020 IEEE International Conference on 

Systems, Man, and Cybernetics (SMC)  (pp. 4012-4019).  IEEE.  

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of  

classification algorithms for EEG-based brain-computer interfaces. Journal of Neural  

Engineering, 4(2), R1–R13.  https://doi.org/10.1088/1741-2560/4/2/R01  

Matthews, G., De  Winter, J., & Hancock, P. A. (2020). What do subjective workload scales  

really measure? Operational and representational solutions to divergence  of workload 

measures. Theoretical Issues in Ergonomics Science, 1-28  

443 

https://doi.org/10.3390/s19061324
https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1088/1741-2560/4/2/R01

	A Passive Electroencephalography Brain-Computer Interface Predicts Mental Workload During Flight Simulation
	Repository Citation

	A PASSIVE ELECTROENCEPHALOGRAPHY BRAIN-COMPUTER INTERFACE PREDICTS WORKLOAD DURING FLIGHT SIMULATION

